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APPENDIX

A. Training Time Consumption
Table VI reports the training time consumption and AUC

values of SPSSOT with different batch sizes. Though the
optimal transport algorithm and the group entropic loss cal-
culation have high complexity (super-quadratically with the
size of the sample), the training usually takes only a few
minutes because of the multiple rounds of minibatch iterative
optimization [40] [41]. Therefore, we can find that as the batch
size increases, the training time increases, but the AUC value
does not change significantly. In other words, a larger batch
size does not necessarily lead to a higher yield. Therefore,
we choose 128 as the batch size of SPSSOT . At the same
time, Table VII compares the training time of different semi-
supervised transfer learning methods. The time consumption
of our method is comparable to that of baselines. Considering
that our method can achieve the best performance, such time
consumption is generally acceptable in practice.

TABLE VI
TRAINING TIME CONSUMPTION WITH DIFFERENT BATCH SIZES.

Batch MIMIC → Challenge Challenge → MIMIC

Size AUC Time(s) AUC Time(s)
64 63.73 ± 0.16 163.52 74.78 ± 0.35 148.74
128 65.10 ± 0.24 181.38 76.05 ± 0.54 167.31
256 64.45 ± 0.45 235.80 75.87 ± 0.32 220.82
512 64.46 ± 0.69 406.63 75.14 ± 0.73 392.36

TABLE VII
TRAINING TIME CONSUMPTION WITH DIFFERENT METHODS.

Method MIMIC → Challenge Challenge → MIMIC

AUC Time(s) AUC Time(s)
MME 61.49 ± 0.84 75.28 75.07 ± 0.70 68.90
LIRR 62.76 ± 0.95 140.45 75.35 ± 0.59 138.64
S3D 61.87 ± 0.61 165.82 75.56 ± 0.37 152.79
SPSSOT 65.10 ± 0.24 181.38 76.05 ± 0.54 167.31

B. Synchronous Self-paced Downsampling
In general, we want to downsample the samples without

Sepsis to make the dataset more balanced. However, down-
sampling unlabeled data is non-trivial as we do not know
their labels. In SPSSOT , we only consider obtaining balanced
training data from the source and target labeled data. Here
we further explore whether downsampling the unlabeled data
is effective. We design a strategy to downsample the labeled
and unlabeled data synchronously based on the widely-used
stratified sampling technique [63]. The basic idea is to use
the currently-trained model to predict unlabeled data, and
then downsampling the unlabeled data according to prediction
probabilities. In particular, we modify SPSSOT to achieve
synchronous downsampling of labeled and unlabeled data in
the self-paced ensemble process, named S2PSSOT: (i) iterate
1000 times with all the data to obtain the initialized base
classifier SSOT; (ii) obtain the prediction probability of 79%
unlabeled data by the base classifier, split them into 10 bins

Algorithm 3 Semi-supervised Optimal Transport with Syn-
chronous Self-paced Ensemble (S2PSSOT)
Require: Source data as Ds = {(xs

i , y
s
i )}

ns
i=1; Target labeled data as Dl =

{(xl
j , y

l
j)}

nl
j=1; Target unlabeled data as Du = {(xu

k)}
nu
k=1;Hardness

function H; Base classifier SSOT; Number of base classifiers n; Number
of hardness bins k; Number of probability bins m; Total number of
training iterations of SSOT T;

1: Initialize SSOT0 according to Algorithm 1;
2: for i = 1 to n do
3: Ensemble Fi(Ds,Dl,Du) = 1

i

∑i−1
j=0 SSOTj(Ds,Dl,Du);

4: for D ∈ {Ds,Dl} do
5: Initialize P ⇐ minority in D;
6: Cut majority set into k bins w.r.t. H(D, Fi): B1, B2, · · · , Bk;
7: Average hardness contribution in l-th bin: hl =∑

m∈Bl
H(xm, ym, Fi)/|Bl|, ∀l = 1, · · · , k;

8: Update self-paced factor ω = tan( iπ
2n

);
9: Unnormalized sampling weight of l-th bin: pl = 1

hl+ω , ∀l =

1, · · · , k;
10: Downsample from l-th bin with pl∑

m pm
· |P|;

11: end for
12: Obtain the downsampled labeled subset {Ds

d,D
l
d};

13: Calculate the probabilities: P l
d = Fi(Dl

d) and Pu = Fi(Du);
14: Cut Dl

d into m bins according to P l
d : Gl

1, G
l
2, · · · , Gl

m;
15: Cut Du into m bins according to Pu : Gu

1 , G
u
2 , · · · , Gu

m;
16: Calculate the percentage of each bin in Dl

d: gj = |Gl
j |/|Dl

d|;
17: Downsample from j-th bin, Gu

j , with gj · |Du|;
18: Train SSOTi using {Ds

d,D
t
d,D

u
d } according to Algorithm 1;

19: end for
20: return Final ensemble model F (Ds,Dl,Du) = 1

n

∑n
m=1

SSOTm(Ds,Dl,Du);

according to prediction probabilities, and keep the proportion
of downsampled unlabeled data in each bin is consistent with
downsampled labeled data; (iii) iteratively train 1000 times
with the downsampled data and go back to step (ii). We repeat
steps (ii) & (iii) five times for getting the final model. The
detailed algorithm flow is shown in Algorithm 3 (line 13 to
17 is to downsample the target unlabeled data).

As shown in Table VIII, there is no significant im-
provement of the new S2PSSOT compared to the original
SPSSOT . The possible reason is that the prediction probabil-
ities of the unlabeled data still have uncertainties and thus
the prediction-probability-based unlabeled data downsampling
may not achieve the ideal data balancing effect. We believe
this is an open and interesting question worthy of further
exploration.

TABLE VIII
RESULTS OF SYNCHRONOUS DOWNSAMPLING FROM TARGET

UNLABELED DATA.

Method MIMIC → Challenge Challenge → MIMIC
SPSSOT 65.10 ± 0.24 76.05 ± 0.54
S2PSSOT 64.89 ± 0.28 75.34 ± 0.39

C. Analysis of Outlier Disturbance

The self-paced sampling in SPSSOT has filtered out some
noise samples through self-paced hardness harmonization. In
general, the outliers would not affect the calculation of class
centers. To confirm this, we also use a popular outlier detection
algorithm, the isolation forest algorithm [64], to filter out the
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outliers before calculating the class centers. As shown in Table
IX, adding an explicit step of outlier removal has no noticeable
effect on the results. Thus, as expected, the outliers do not
seriously affect the accuracy of the calculation of class centers
in SPSSOT .

TABLE IX
RESULTS OF REMOVING OUTLIERS.

Method MIMIC → Challenge Challenge → MIMIC
SPSSOT 65.10 ± 0.24 76.05 ± 0.54
+ outlier removal 65.00 ± 0.20 75.89 ± 0.35

D. Selection of ρ in Label Adaptive Constraint
In Eq. (3), we adapt a parameter, ρ, to adjust the transport

cost between two samples with the same label; especially when
ρ = 0, the transport cost is 0; when ρ = 1, the transport cost is
calculated only according to the similarity of features (same as
the unsupervised setting). We set ρ = {0, 0.05, 0.1, 0.2, 0.4}
and conduct experiments. The results are shown in Table X. It
can be observed that when ρ is small (between 0 to 0.1), the
performance is better and relatively stable; then as ρ increases,
the AUC shows a slow downward trend. This indicates that
in our task, it is better to set a small value to ρ, and setting
ρ = 0 (i.e., ignoring the transport cost if two samples have
the same label) is also reasonable. In SPSSOT , we set ρ to 0.1
and 0.05 for MIMIC → Challenge and Challenge → MIMIC,
respectively.

TABLE X
RESULTS OF DIFFERENT ρ.

ρ MIMIC → Challenge Challenge → MIMIC
0 64.98 ± 0.26 75.96 ± 0.68

0.05 64.99 ± 0.35 76.05 ± 0.54
0.1 65.10 ± 0.24 75.90 ± 0.52
0.2 64.47 ± 0.39 74.75 ± 1.15
0.4 63.91 ± 0.21 74.19 ± 0.75

E. Unmatched Features
In SPSSOT , we use only the features shared by two domains

(listed in Table I) with a domain-shared feature generator G.
Here, we list the (unmatched) private features of two datsets
in Table XI. Considering that our task is a transfer learning
setting, we discuss the private features for the target domain
and source domain separately.

1) Target private features: Considering target private fea-
tures may be helpful to the target classification task, we
design new network structures to incorporate these features (as
shown in Fig. 10): (i) add a feature encoder Gpri for private
features (the structure is the same as G); (ii) concatenate the
output of Gpri and the output of F’s first layer; (iii) take the
concatenation as the input of a new target classifier Fnew.
After training SPSSOT , we transfer the parameters of SPSSOT
and randomly initialize parameters in other components, and
then update parameters with the target labeled data. In brief,
we finetune SPSSOT by the target labeled data with full
features (i.e., shared and private features).

Fig. 10. The network structure to transfer SPSSOT ’s parameters to
target domain with private features. Xshare means only using shared
features as the input, similarly, Xprivate means only using target
private features as input.

As illustrated in Table XII, we can find that there is
a significant improvement in Challenge → MIMIC but no
significant change in MIMIC→Challenge. This may be be-
cause Challenge only has two private features which are not
important.

TABLE XI
THE PRIVATE FEATURES OF TWO DATASETS.

MIMIC Challenge
Height, Weight, GCS,
CRP, PCT, D-Dimer,
FBG, TCO2

TBil(Total bilirubin),
Troponin I

TABLE XII
RESULTS OF ADDING TARGET PRIVATE FEATURES.

Method MIMIC → Challenge Challenge → MIMIC
SPSSOT 65.10 ± 0.24 76.05 ± 0.54

+ feaTprivate 64.88 ± 0.51 77.53 ± 0.59

2) Source private features: Transferring the knowledge from
source private features for the prediction in the target domain is
non-trivial. The optimal transport technique is hard to directly
apply to source private features, as no corresponding features
exist in the target domain (so feature similarity cannot be
appropriately calculated between a source sample and a target
sample). To address this issue, it may require incorporating
more transfer learning techniques, e.g., knowledge distillation
[61].


