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Abstract— Leveraging machine learning techniques for
Sepsis early detection and diagnosis has attracted increas-
ing interest in recent years. However, most existing meth-
ods require a large amount of labeled training data, which
may not be available for a target hospital that deploys a
new Sepsis detection system. More seriously, as treated pa-
tients are diversified between hospitals, directly applying a
model trained on other hospitals may not achieve good per-
formance for the target hospital. To address this issue, we
propose a novel semi-supervised transfer learning frame-
work based on optimal transport theory and self-paced
ensemble for Sepsis early detection, called SPSSOT , which
can efficiently transfer knowledge from the source hospital
(with rich labeled data) to the target hospital (with scarce
labeled data). Specifically, SPSSOT incorporates a new op-
timal transport-based semi-supervised domain adaptation
component that can effectively exploit all the unlabeled
data in the target hospital. Moreover, self-paced ensemble
is adapted in SPSSOT to alleviate the class imbalance issue
during transfer learning. In a nutshell, SPSSOT is an end-
to-end transfer learning method that automatically selects
suitable samples from two domains (hospitals) respectively
and aligns their feature spaces. Extensive experiments on
two open clinical datasets, MIMIC-III and Challenge, demon-
strate that SPSSOT outperforms state-of-the-art transfer
learning methods by improving 1-3% of AUC.

Index Terms— Semi-supervised Transfer Learning, Sep-
sis Early Detection, Optimal Transport Theory
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I. INTRODUCTION

SEPSIS is a life-threatening disease that occurs when the
body’s response to infection is out of balance [1]. In severe

cases, it will trigger body changes that may damage multiple
organ systems and lead to death [2]. Sepsis has become
a major cause of in-hospital death for intensive care unit
(ICU) patients, which places an enormous burden on public
health expenditures [3] [4]. In 2013, Sepsis was responsible
for 10% of the ICU admissions and occupied about 25%
of the ICU beds in US hospitals, accounting for over $23.6
billion (6.2%) of total US hospital costs [5]. Early detection
is crucial to the sepsis management; with each one-hour delay
in the administration of antibiotic treatment, the mortality rate
increases by 7% [6].

Recently, machine learning techniques start to be applied
in Sepsis diagnosis and early detection, such as the linear
model [7], Support Vector Machine [8], Neural Network [9],
Gradient Boosting Decision Tree [10]. These methods need
huge amounts of labeled training data to ensure performance.
In reality, one hospital may hold its treated patients’ Electronic
Medical Records (EMRs), but it is common that most EMRs
are not properly labeled for a machine learning task (e.g.,
Sepsis early detection) [11]. Therefore, how to use these
(unlabeled) records to predict the health situations of new
patients is an important problem to be addressed.

Transfer learning [12] is a promising machine learning
paradigm for the label-scarcity scenario; it provides an un-
conventional perspective to transfer external knowledge from
another hospital with rich labeled data to improve the machine
learning performance of a target hospital with scarce labeled
data. It also reduces expensive data-labeling costs. The state-
of-the-art transfer learning strategy is fine-tuning [13] [14];
however, overfitting is often caused by fine-tuning a large
number of parameters with very small labeled data [15]. Con-
sequently, many challenges still exist for successful knowledge
transfer, especially in clinical data:

Covariate Shift. Different medical devices in different
hospitals may result in diverse test values. Also, patients’
agglomeration factor cannot be neglected. Specifically, patients
tend to choose a hospital that is more appropriate for their
diseases and health conditions [16]. Hence, the sets of patients’
information collected from two hospitals are often different
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Fig. 1. The Overall Framework of Semi-supervised Optimal Transport
with Self-paced Ensemble (SPSSOT ), which consists of 3 main parts:
(1) Feature Engineering to extract Sepsis-related features under the
guidance of doctors; (2) Self-paced sampling to filter out “more con-
tributing” samples from negative samples (no Sepsis, shown as circles),
which will help to improve the performance of classifier. (3) DA (Semi-
supervised domain adaptation): given all data with labels of source
hospital (shown as red), little data with labels and most data without
labels in target hospital (shown as blue), align two feature spaces
via optimal transport theory and learn a better classifier to distinguish
whether Sepsis will occur. Best viewed in color.

from each other; in other words, they are not in the same
feature space. Consequently, it is essential to map them into
a common hidden space, known as domain adaptation [17].

Label shift. Label shift implies that the label distribution
changes from the source to the target [18]. In particular,
the incidence of a disease may fluctuate with locations and
time, easily leading to a negative transfer. To alleviate this
pitfall, prior methods propose to re-weight source samples’
importance [19]; however, they incur a huge computational
burden when a large number of samples exist.

Class Imbalance. Imbalanced data is ubiquitous especially
for medical diagnostic datasets [20], and it exhibits a long-
tailed distribution [21]. During transfer learning, it is also vital
to reduce the classification bias caused by data imbalance and
find more appropriate decision boundaries.

To overcome the above difficulties, we propose a semi-
supervised transfer learning approach based on optimal trans-
port [22] and self-paced ensemble [23] approach to complete
cross-hospital Sepsis early detection. There are three main
components of SPSSOT: feature engineering under the guid-
ance of doctors to extract features associated with Sepsis, self-
paced ensemble to achieve data balance, and semi-supervised
domain adaptation via optimal transport to tackle the problem
of inconsistent feature spaces. The overall framework is shown
in Fig. 1. Our contributions are summarized as follows:

(1) To the best of our knowledge, this is the first work on
cross-hospital Sepsis early detection. In particular, by properly
transferring knowledge from another hospital with rich labeled
data, our method can enable good detection performance for

the target hospital with little labeled data.
(2) Considering the inconsistent feature distributions and the

unbalanced noisy data status in cross-hospital Sepsis early de-
tection, we propose a novel end-to-end deep transfer learning
framework, called SPSSOT , consisting of three components:
feature engineering, semi-supervised domain adaptation with
optimal transport, and self-paced ensemble. More specifically,
in semi-supervised domain adaptation with optimal trans-
port, we design a label-adaptive optimal transport strategy to
achieve the precise-pair-wise optimal transport, and an intra-
domain deep feature discrimination strategy to find a better
decision boundary. In self-paced ensemble, we improve and
incorporate an ensemble algorithm for imbalanced classifica-
tion [23] into our deep transfer learning framework, which can
adaptively downsample the majority data from both domains
to alleviate the class imbalance issue.

(3) By conducting the experiments on mutual transfer be-
tween two open clinical datasets, MIMIC and Challenge, we
have validated SPSSOT to improve the AUC values by at least
3% and 1% with only 1% labeled data in the target domain
compared to state-of-the-art transfer learning methods [24]–
[26].

II. RELATED WORK

This paper mainly provide a new solution for Sepsis early
detection when there are few labeled EMRs in the hospital.
We propose a transfer learning framework based on optimal
transport theory [27] to cope with the data discrepancy be-
tween different hospitals; and introduce a self-paced ensemble
method to overcome the extreme label imbalance problem.
Accordingly, we provide a brief overview of related work in
four fields, i.e., Sepsis early detection, transfer learning with
optimal transport, data imbalance, and self-paced learning.

Sepsis Early Detection. Machine learning (ML) techniques
excel in the analysis of complex signals in data-rich envi-
ronments which promise to improve the early detection of
Sepsis. Most of the studies are carried out in the ICU [11]
[28], and some of them are specifically on neonatal Sepsis
[29] [30]. Systematic review and meta-analysis indicate that
individual machine learning models can accurately predict the
onset of Sepsis in advance on retrospective data [10] [31].
The PhysioNet/Computing in Cardiology (CinC) Challenge
2019 focused on this issue and promoted the development of
open-source AI algorithms for real-time and early detection
of Sepsis [32]. Such approaches, which typically apply ML
techniques to clinical data, can dynamically suggest real-
time predictions and optimal treatments for Sepsis patients
and yield excellent results in the medical field. However, the
variety of studies engaged in Sepsis early detection without
sufficient labeled data remains small.

Transfer Learning with Optimal Transport. The core of
transfer learning is to align the source and target distributions
by minimizing a divergence that measures the discrepancy be-
tween them. Optimal Transport (OT) theory can be regarded as
one of the discrepancy-based alignment methods, as it can be
used for calculating Wasserstein distances between probability
distributions [33]. Given the cost function (e.g., l2 distance)



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 3

between samples in the source and target domains, we can
calculate the probabilistic coupling matrix γ. It has been
applied in domain adaptation to learn the transformation be-
tween different domains [34] [35], with associated theoretical
guarantees [36]. Moreover, it is applicable to different transfer
scenarios, including unsupervised [37] and semi-supervised
[38] situations. Initially, limited by the space complexity of OT
(super-quadratically with the size of the sample), it can only
be deployed to tackle problems of small or medium size [39].
Recently, more and more work has attempted to combine deep
learning method with OT to train through multiple rounds of
minibatch iterative optimization, such as DeepJDOT [40] and
RWOT [41], breaking the limit of complexity. In our setting,
there are few labeled patients in the target hospital, which can
be viewed as a problem of semi-supervised transfer learning.
In contrast to the common approach in the unsupervised case,
we can further consider the coupling constraints for labeled
samples when using OT.

Data Imbalance. Traditionally, ML algorithms may assume
that the number of samples in considered classes are roughly
the same, which is not the case in real-life problems. In
many medical datasets, the ratio of minority class to majority
class can be 1:10, even up to 1:50 [20]. The key point of
imbalanced learning is that the minority classes are often
more important, namely, we need to focus on the diseased
samples rather than the healthy samples. A series of studies
have been conducted to overcome data imbalance issue, which
can be classified into three types: i) data-level methods, which
adjust the dataset to balance the minority and majority. A
typical way is to downsample the majority or oversample the
minority; ii) algorithm-level methods, which do not change the
dataset directly, but rather enhance the attention of the model
to the minority by modifying the algorithm, i.e., by setting a
cost matrix in cost-sensitive learning with help from domain
experts [42]; iii) the combination of both, which takes the
advantage of the above methods. For instance, SMOTEBoost
[43] combines SMOTE [44] with Boosting [45] ensemble
learning to gain a strong ensemble classifier, SPE [23] tries to
handle tasks on the highly imbalanced, noisy and large-scale
dataset by introducing the “classification hardness” function
and undersampling with an iterated strategy.

Self-paced Learning. It is a learning paradigm to generates
the sequence of training samples by the learner itself, whose
core idea is to adaptively select the most informative samples
in each iteration [46]. In recent years, the self-paced learning
regime has been adopted for various tasks, including weakly
supervised object detection [47], co-saliency detection [48],
and data imbalance [23], which indicates the effectiveness
of such a learning paradigm. Though there are some studies
that have combined self-paced learning with deep learning for
joint learning [49], we try to combine self-paced learning with
optimal transport to eliminate the impact of data imbalance on
semi-supervised domain adaptation.

III. PRELIMINARIES

In this section, we first define our research problem from
an application perspective. Then, we abstract the problem in
a transfer learning setting.

A. Sepsis Early Detection
The objective is to use patients’ demographic and phys-

iological data for Sepsis early detection. Considering the
early warning of Sepsis is potentially life-saving, we will
detect sepsis 6 hours before the clinical diagnosis of Sepsis.
This setting is consistent with the PhysioNet Computing in
Cardiology Challenge 2019 [32] [50], whose topic is Early
Prediction of Sepsis from Clinical Data.1

In short, given a set of n patients’ clinical variables since
they entered the ICUs, {X1,X2, · · · ,Xn}, where the i-th
patient’s is Xi = ⟨x1,x2, · · · ,xm⟩, xj is the clinical features
of j-th time windows (we set the length of one time window
as 6 hours). Then we aim to predict whether Sepsis will occur
in the next 6 hours for each xj . Thus, it can be seen as a
binary classification problem. The clinical variables will be
explained in detail in Sec. IV-A.

B. Semi-supervised Transfer Learning Formulation
When we try to build the detection model in a target hospital

with few labeled data, the basic idea is to learn knowledge
from other rich data sources. In other words, we can consider
this problem as semi-supervised transfer learning.

In particular, we are given a source domain and a target
domain with the same features. The source domain contains
a large number of labeled samples, and the target domain
only contains a limited number of labeled samples (i.e. most
samples are unlabeled). The task is to improve the classifi-
cation accuracy in the target domain. We denote the source
domain as Ds = {(xs

i , y
s
i )|i = 1, 2, · · · , ns}, xs

i ∈ Rds ,
the target domain as Dt = {Dl,Du} where the labeled data
Dl = {(xl

j , y
l
j)|j = 1, 2, · · · , nl} and the unlabeled data

Du = {(xu
k)|k = 1, 2, · · · , nu}, xl

j ,x
u
k ∈ Rdt . nl and

nu are the number of labeled and unlabeled target samples,
respectively, nt = nl + nu (nl ≪ nu). We suppose ds = dt
(the source and target domains share the same features) and
Ys = Yt = {0, 1} (binary classification task, 1/0 indicates
that Sepsis would/wouldn’t happen in 6 hours).

IV. METHODOLOGY

In this section, we propose a semi-supervised transfer learn-
ing framework, SPSSOT , to address our research problem,
whose schematic diagram is illustrated as Fig. 1. It consists of
three main parts: (1) Feature Engineering, (2) Semi-supervised
Optimal Transport, and (3) Self-paced ensemble.

A. Feature Engineering
We extract the clinical variables and Sepsis criteria from

the Electronic Medical Records (EMRs). For each patient,
34 clinical variables are constructed, including 7 vital sign
variables, 23 laboratory variables , and 4 demographic vari-
ables. Detailed variables are listed in Table I. The Sepsis-3
criteria are extracted as suspected infection with associated
organ dysfunction (SOFA ≥ 2) [1] [51].

In particular, prior work has shown that typical vital signs,
such as heart rate (HR), oxygen saturation (O2Sat), body

1https://physionet.org/content/challenge-2019/1.0.0/
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TABLE I
FEATURE DESCRIPTION

Measurement Description

Vital sign variables
HR Heart rates (beats per minute)
O2Sat Pulse oximetry (%)
Temp Temperature (◦C)
SBP Systolic BP (mm Hg)
MAP Mean arterial pressure (mm Hg)
DBP Diastolic BP (mm Hg)
Resp Respiration rate (breaths per minute)

Laboratory variables
BaseExcess Excess bicarbonate (mmol/L)
HCO3 Bicarbonate (mmol/L)
FiO2 Fraction of inspired oxygen (%)
pH pH value

PaCO2
The partial pressure of carbon dioxide from
arterial blood (mm Hg)

SaO2 Oxygen saturation from arterial blood (%)
AST Aspartate transaminase (IU/L)
BUN Blood urea nitrogen (mg/dL)
Alkalinephos Alkaline phosphatase (IU/L)
Calcium Calcium (mg/dL)
Chloride Chloride (mmol/L)
Creatinine Creatinine (mg/dL)
Bilirubin direct Direct bilirubin (mg/dL)
Glucose Serum glucose (mg/dL)
Lactate Lactic acid (mg/dL)
Magnesium Magnesium (mmol/dL)
Phosphate Phosphate (mg/dL)
Potassium Potassiam (mmol/L)
Hct Hematocrit (%)
Hgb Hemoglobin (g/dL)
PTT Partial thromboplastin time (seconds)
WBC Leukocyte count (count/L)
Platelets Platelet count (count/mL)

Demographic variables
Age Age (years)
Sex Female (0) or male (1)
HospAdmTime Hours from hospitalization to ICU admission
ICULOS Length of stay in ICU (hours since admission to ICU)

temperature (Temp), mean arterial blood pressure (MAP),
and respiratory rate (Resp), would impact the Sepsis early
detection over time [32] [52]. Besides, Sepsis incidence rate
also varies with respect to the ICULOS (i.e., time stay in ICU).
At the early phase, the incidence rate is moderate and slightly
increases probably due to the patient prior conditions; at the
middle phase, the incidence rate drops a little and becomes
stable; at the late phase, the incidence rate increases drastically
because there is big vulnerability for the patients that stay long
in the ICU [10].

To capture the time series fluctuation, we take 6 hours as
a time window. In the time slot, we calculate the maximum
values, minimum values, means, standard deviations and num-
ber of non-missing for all vital signs and laboratory values,
while keeping the latest values. Finally we concatenate these
statistics with demographic variables as the final features to
predict whether Sepsis will occur in the next 6 hours.

B. Semi-supervised Optimal Transport

Optimal transport theory is a promising strategy applied in
transfer learning research. Most existing studies leverage it in
unsupervised transfer learning [33]. That is, they assume that

no labeled data is in the target domain. However, few labeled
samples in the target domain are more in line with the real
situation [25]. For instance, it is usually acceptable to label a
few samples when we want to deploy a Sepsis early detection
system in a new hospital, if this can significantly improve the
system performance.

With this in mind, we design a novel semi-supervised
optimal transport (SSOT) strategy for transfer learning. The
purpose is to increase classification performance by mini-
mizing the distribution discrepancy between the source and
target domains with a well-structured neural network. Specif-
ically, the neural network enables the end-to-end training of
a transferable feature generator and an adaptive classifier, as
illustrated in Fig. 2. Because clinical features can be viewed as
tabular data, we choose classical multi-layer perception (MLP)
with shared weights as the feature generator G.

The main parts of SSOT are label adaptive optimal trans-
port, group entropic loss for unlabeled samples and intra-
domain discriminative feature clustering. In the following
sections, we will present the details of SSOT.

1) Label Adaptive Optimal Transport: In the traditional opti-
mal transport strategy for unsupervised transfer learning, the
source and target samples are mapped to a shared feature space
where the samples of both domains cannot be differentiated
[33]. In semi-supervised transfer learning, there are a few
labeled samples in the target domain; we then need to propose
a new optimal transport strategy to effectively leverage these
labeled target data. Therefore, beyond the traditional optimal
transport strategy, our mechanism further conducts the opti-
mization to ensure that the labeled target samples should only
be matched with the same-labeled source samples.

Optimal Transport. The optimization of optimal transport
is based on Kantorovich problem [53] which seeks for a
general coupling γ ∈ X (Ds,Dt) between Ds and Dt:

γ∗ = argmin
γ∈X (Ds,Dt)

∫
Ds×Dt

C(xs, xt)dγ(xs, xt) (1)

where X (Ds,Dt) denotes the probability distribution between
Ds and Dt.

The discrete reformulation is

γ∗ = argmin
γ∈X (Ds,Dt)

⟨γ, C⟩F (2)

where ⟨·, ·⟩F is the Frobenius dot product, C ∈ Rns×nt is the
cost function matrix. C(xs, xt) = ∥xs − xt∥k represents the
cost to move probability mass from xs to xt; we set k = 2
following the literature [33].

Label Adaptive Constraint. As a few data can be labeled
in the target domain, we adjust the cost of transport according
to the labels of the two domains’ samples. If two samples have
the same labels, it means that the transport cost is very low
between these two samples. Therefore, we can use a parameter,
ρ, to adjust the cost, i.e, C(xs, xt) = ρ, if y(xs) = y(xt);
otherwise, we set the cost to 1. At the same time, for unlabeled
target samples, we can consider supplementing a weight for
transport cost to measure the difference between the predicted
probabilities and the labels of source samples. Accordingly,
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(a) The Architectures of SSOT: (1) Initialize the feature generator G and the classifier F ;
(2) Fix G and F , find the current best coupling γ̂ between Ds and Dt({Dl,Du}) by the
OT solver, then fix γ̂ and update the parameters of G and F ; (3) Iterative training.

(b) The Objectives of SSOT: (1) the marginal distributions
of two domains are identical; (2) the samples belonging
to the same class are more aggregated.

Fig. 2. Semi-supervised Domain Adaptation with Optimal Transport (SSOT ).

Algorithm 1 Semi-supervised Optimal Transport (SSOT)
Require: Source data as Ds = {(xs

i , y
s
i )}

ns
i=1; Target labeled data as Dl =

{(xl
j , y

l
j)}

nl
j=1; Target unlabeled data as Du = {(xu

k)}
nu
k=1; T is set

as the total number of training iterations; n represents the batch-size for
training.

1: Initialize the feature generator G and the classifier F by fine tuning;
2: for i = 1 to T do
3: Randomly select half of source samples and target labeled samples;
4: Calculate the class centers in two domains according to Eq.9.
5: Randomly choose source samples {(xs

i , y
s
i )}ni=1 ∈ Ds, target

labeled samples {(xl
j , y

l
j)}

n/2
j=1 ∈ Dl, and target unlabeled samples

{(xu
k)}

n/2
k=1 ∈ Du;

6: Fix Ĝ and F̂ , solve for γ;
7: Fix γ̂, update parameters of G and F ;
8: end for
9: return G and F ;

we design a reweight matrix, called label adaptive matrix R.
Then, the label adaptive optimal transport can be written as

γ∗ = argmin
γ∈X (Ds,Dt)

⟨γ,R · C⟩F (3)

where

R(xt, xs) =

{
ρ+ (1− ρ) · |y(xs)− y(xt)| ∈ {ρ, 1}, (xt, yt) ∈ Dl

ρ+ (1− ρ) · |y(xs)− ŷ(xt)| ∈ [ρ, 1], xt ∈ Du ,

y(x) is the label of a sample x and ŷ(x) is the prediction
probability P (y(x) = 1).

In summary, the solution to this problem can be described
to minimize the following objective function

Llot = αLot + θsLs
cls + Ll

cls (4)

where α and θs are hyper-parameters, Lot is the cost of
optimal transport, Ls

cls and Ll
cls are the cross entropy function

of the source and target domain, i.e.,

Lot =
∑
i,j

γ∗i,j(∥G(x
s
i )− G(xtj)∥

2) (5)

Ls
cls = −

∑
xsi∈Xs

y(xsi ) log ŷ(x
s
i )

Ll
cls = −

∑
xlj∈Xl

y(xlj) log ŷ(x
l
j)

(6)

2) Group Entropic Loss for Unlabeled Samples: It is insuffi-
cient to ensure that the mappings of source and target samples
cannot be differentiated in a shared feature space. This only
implies that the marginal distributions of the two domains are
identical. To further mitigate the differences in the conditional
distributions, we borrow the labels of the source domain to
calculate the classification loss of target unlabeled samples.
That is, if one target sample xu

j has a high transport probability
from one source sample xs

i (γij is high), then it is probable
that the predicted label is the same with y(xs

i ).
Based on this idea, we form the group entropic loss to

compare the cross entropy between the predicted probability
of each target unlabeled sample and the true label of each
source sample. It can be written as

Lg = − 1

ns

1

nu

∑
xsi∈Xs

∑
xtj∈Xu

γ∗ij(y(x
s
i ) log ŷ(x

u
j )) (7)

where ŷ(xu
j ) = F(G(xu

j )) is the predicted probability of xu
j .

By penalizing couplings with high cross entropies, we can
achieve that each unlabeled target sample can be transported
from source samples with same class.

3) Intra-domain Feature Discrimination: The center loss is
originally proposed to enhance the discriminative power of
the deeply learned features for face recognition [54]. Inspired
by this, we also hope to ensure that samples belonging to the
same class are close to each other in the feature space. Here,
we consider the discriminative centroid loss Lcc for the labeled
samples in both source domain and target domain.

Lcc =
1

ns

ns∑
i=1

∥G(xsi )− csi ∥
2
2 − (∥cs0 − cs1∥22)

+
1

nl

nl∑
j=1

∥G(xtj)− ctj∥
2
2 − (∥ct0 − ct1∥22)

(8)

where csi and ctj denote the corresponding class center of xs
i

and xt
j in the source domain and target domain, respectively.

We evaluate them by averaging the deep discriminative fea-
tures of the samples in the corresponding class.
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Algorithm 2 Semi-supervised Optimal Transport with Self-
paced Ensemble (SPSSOT)
Require: Source data as Ds = {(xs

i , y
s
i )}

ns
i=1; Target labeled data as Dl =

{(xl
j , y

l
j)}

nl
j=1; Target unlabeled data as Du = {(xu

k)}
nu
k=1;Hardness

function H; Base classifier SSOT; Number of base classifiers n; Number
of bins k; Total number of training iterations of SSOT T;

1: Initialize SSOT0 according to Algorithm 1;
2: for i = 1 to n do
3: Ensemble Fi(Ds,Dl,Du) = 1

i

∑i−1
j=0 SSOTj(Ds,Dl,Du);

4: for D ∈ {Ds,Dl} do
5: Initialize P ⇐ minority in D;
6: Cut majority set into k bins w.r.t. H(D, Fi): B1, B2, · · · , Bk;
7: Average hardness contribution in l-th bin: hl =∑

m∈Bl
H(xm, ym, Fi)/|Bl|,∀l = 1, · · · , k;

8: Update self-paced factor ω = tan( iπ
2n

);
9: Unnormalized sampling weight of l-th bin: pl = 1

hl+ω , ∀l =

1, · · · , k;
10: Under-sample from l-th bin with pl∑

m pm
· |P|;

11: end for
12: Train SSOTi using newly under-sampled subset according to Algo-

rithm 1;
13: end for
14: return Final ensemble model F (Ds,Dl,Du) = 1

n

∑n
m=1

SSOTm(Ds,Dl,Du);

csk =
1

Sa

Na∑
i=1

G(xsi )I(y
s
i , k), k ∈ {0, 1}

ctk =
1

Sb

Nb∑
j=1

G(xtj)I(y
t
j , k), k ∈ {0, 1}

(9)

where I(yi, k) =

{
1, yi = k

0, yi = 1− k
, and Sa =

∑Na

i=1 I(ysi , k),

Sb =
∑Nb

j=1 I(ybj , k). Ideally, the class centers should be
calculated based on all the samples while the procedure is
time-consuming. Herein, we compute the class centers by
randomly sampling Na and Nb samples. In our experiments,
we set Na = 1

2 × ns, Nb =
1
2 × nl.

4) Training: Here, we introduce the training process of
SSOT. Considering the three parts of SSOT, the training
objective can be described as

min
G,F

Llot + λLg + βLcc (10)

where λ and β denote hyper-parameters that trade-off the con-
tribution of the intra-domain structures and domain alignment,
respectively.

The training process is shown in Algorithm 1. Specifically,
in each iteration, we use two steps to update the parameters.
First, we fix the feature generator G and the classifier F , and
use the optimal transport mechanism (POT (python optimal
transport) [39] in our implementation) to calculate the coupling
γ (line 6); Second, we fix γ to update G and F with the
stochastic gradient descent algorithm (line 7).

C. Self-paced Ensemble

When we try to transfer knowledge from the source domain
to the target domain, label shift may happen between two
domains [18]. That is, the label distribution changes from

Fig. 3. The Core Idea of Self-paced Ensemble Based on SSOT
(SPSSOT). There are 3 main steps: (1) Initialize SSOT according to
Algorithm. 1; (2) Self-paced under-sampling from majority class in both
domains to obtain balanced data; (3) Get an additive model by iteration
training. Best viewed in color.

the source to the target. At the same time, it is ubiquitous
that medical diagnostic data is extremely imbalanced. This
reveals not only the disproportion between classes but also
other difficulties embedded in the nature of data, such as noises
and class overlapping [55].

Therefore, it is necessary to design a strategy to solve both
problems. Inspired by the self-paced ensemble method (SPE)
[23], we adapt it to our end-to-end transfer-learning prediction
framework so as to sample labeled data simultaneously from
two domains. Fig.3 shows the core idea of our SPE-enhanced
SSOT (SPSSOT) mechanism. Next, we will present in detail
how to carry out the sampling strategy.

1) Classification Hardness Function: We use H to denote the
hardness function, which can be calculated by the summation
of individual sample errors, such as absolute error and cross
entropy. Given a classifier F and a sample (x, y), the hardness
can be written as H(x, y,F) = |F(x) − y| ∈ [0, 1]. This
value contains information that is highly associated with the
difficulty of the classification, like noise and model capacity.
According to the hardness values, we can divide samples into
three types as follows:

• Trivial samples account for the largest proportion of
samples that are easy to classify, i.e., each of them only
contributes tiny hardness. However, the overall contribu-
tion is not negligible due to the large number of samples.

• Noise samples are different from trivial samples. Though
the sample number is small, each sample has a large
hardness value. These samples can be caused by the
indistinguishable overlapping and will exist stably even
when the model is converged.

• Borderline samples are the rest training samples.

Intuitively, while sampling, we should (1) keep a small
proportion of trivial samples to maintain the original data
distribution to avoid overfitting; (2) exclude the interference
of noise samples during training; (3) enlarge the weights of
borderline samples to improve the model performance. What
remains to be settled is how to distinguish three types of
samples and achieve under-sampling in practice.
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2) Self-paced Under-sampling: There are two important
components, self-paced hardness harmonize and combination
with SSOT in achieving self-paced sampling and iterative
training. Algorithm 2 describes the detailed process.

Self-paced hardness harmonize. We regard the class with a
higher proportion as the majority (in Sepsis early detection, the
majority class is the patients without Sepsis). After calculating
the hardness values of the majority samples, we can split them
into k bins regarding different hardness levels, i.e., the l-th bin,
Bl, is defined as

Bl = {(x, y)| l − 1

k
≤ H(x, y,F) <

l

k
},H ∈ [0, 1] (11)

Then we can under-sample from every bin by ensuring that
the total hardness contribution of each bin is the same, so
as to generate a balanced dataset. By harmonizing hardness
contribution, the sampling probability of those bins with
a larger population will be generally lower. Moreover, we
leverage a self-paced factor ω to adjust the decreasing level in
training process. This factor is calculated by tan function (line
8 of Algorithm 2) [23]. As ω gets larger, the sampling weights
of hard samples will increase. In the beginning, we pay more
attention to borderline samples to improve model performance.
While in the later iterations (ω becomes very large), the model
still keeps a certain number of trivial samples as the “skeleton”
to avoid overfitting.

Combination With SSOT. Unlike the original SPE [23] that
is applied on supervised classification models (e.g., classifica-
tion models of sklearn2), we should solve the data imbalance
in two domains and combine the self-paced ensemble strategy
with SSOT. As shown in Fig.3, we perform self-paced under-
sampling simultaneously on source labeled data and target
labeled data; then, we obtain two balanced datasets (both
source and target domains) for training SSOT iteratively.

V. EXPERIMENTS

A. Dataset

We conduct our experiments on two widely-used real-life
Sepsis detection datasets, MIMIC-III [56] and the PhysioNet
Computing in Cardiology Challenge 2019 [32] (Challenge).
Specifically, we extracted the first 48-hour data since patients
entered ICUs. As a part of patients’ records have a large
number of missing values, we screened out the patients whose
missing value ratio is less than 80%. To obtain the dynamic
change information of the data over a period of time, for
every patient, we calculated the maximum, minimum, mean,
standard error and latest of each clinical indicator within
6 hours. In this way, a patient’s 48-hour ICU stay can be
converted to eight 6-hour records (samples). Then, we can use
the k-th (k ∈ [1, 8]) record to predict whether Sepsis would
occur or not in the next 6 hours. Through such preprocessing,
we obtain the final data for experiments. Some basic statistic
information is enumerated in Table II.

2https://scikit-learn.org/stable/

TABLE II
STATISTICS OF THE DATASETS

MIMIC Challenge

# patients 12529 8270
# septic patients 2977 1831
Sepsis prevalence (%) 23.76 22.14

# samples 87501 45674
# samples occur Sepsis in next 6 hours 5032 4869
samples with sepsis (%) 5.75 10.66

B. Compared Algorithms
In our experiments, we split the target data into three parts:

1% as labeled data (we will change the ratio in Sec. V-E.3),
79% as unlabeled data, and 20% as test data. To compare with
our method SPSSOT , we implement four types of baselines.

• Source only: train a classifier only with the source data
and directly use it with the target test data.

• Target only: train a classifier only with the target labeled
data (i.e., 1% of the target data) and use it with the target
test data.

• Source & Target Train Together: put the source data and
the labeled target data together as training data to learn
a classifier.

• Source & Target Transfer: instead of training together,
design specific transfer learning methods to transfer
knowledge from the source domain to the target domain.

In the former three types, we all use three classical machine
learning algorithms popular in Sepsis early detection, i.e.,
Logistic Regression (LR) [7], Neural Network (NN) [9] and
XGBoost [57]. For the fourth type of baselines, we imple-
ment five methods for comparison, including an unsupervised
domain adaptation method using transport optimal theory,
DeepJDOT [40], fine-tuned NN (Finetune), and three start-
of-the-art semi-supervised domain adaptation methods, MME
[24], LIRR [25] and S3D [26].

C. Experiment Design
There is a self-paced sampling strategy in SPSSOT to solve

the class imbalance question. For a fair comparison, we also
apply the method, SPE 3, to downsample majority data and
train ensemble models when using LR, NN and XGBoost as
base classifiers, where the hardness function is set to Squared
Error, the number of base classifiers is set to 20 and the number
of bins is to 15. LR and XGBoost are trained with default
scikit-learn parameters, and NN has four linear layers, whose
dimension is (256, 128, 128, 2).

In transfer learning methods, we use two linear layers as
the feature generator G and the dimension is (256, 128). The
structure of classifier, F , is also two-layer and the dimension is
(128, 2), where 2 means binary classification in our task. The
batch size is set to 128, the parameter optimization algorithm
is SGD, and the learning rate is set to 0.001. In Finetune, we
first train G and F with source data and fine-tune them with
target labeled data; both parts are trained for 100 epoches. In

3https://github.com/ZhiningLiu1998/self-paced-ensemble



8 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

TABLE III
OVERALL EVALUATION RESULTS

MIMIC → Challenge Challenge → MIMIC Average

AUC improvement AUC improvement improvement
Source Only
LR 56.15 ± 0.85 15.94% 72.70 ± 0.35 4.61% 10.28%
NN 59.24 ± 0.75 9.89% 70.53 ± 1.34 7.83% 8.86%
XGBoost 60.81 ± 0.26 7.05% 59.41 ± 0.94 28.01% 17.53%
Target Only
LR 60.21 ± 0.07 8.12% 71.62 ± 0.50 6.19% 7.16%
NN 60.58 ± 0.14 7.46% 61.92 ± 0.29 22.82% 15.14%
XGBoost 58.90 ± 0.65 10.53% 72.97 ± 0.54 4.10% 7.38%
Source & Target Train Together
LR 59.90 ± 1.15 8.68% 72.89 ± 0.47 4.34% 6.51%
NN 60.81 ± 0.24 7.05% 71.53 ± 0.09 6.32% 6.69%
XGBoost 60.25 ± 0.35 8.05% 68.71 ± 0.21 10.68% 9.37%
Source & Target Transfer
DeepJDOT 61.17 ± 0.75 6.42% 72.64 ± 0.39 4.69% 5.56%
Finetune 60.11 ± 0.73 8.30% 71.62 ± 1.72 6.19% 7.25%
MME 61.49 ± 0.84 5.87% 75.07 ± 0.70 1.31% 3.59%
LIRR 62.76 ± 0.95 3.73% 75.35 ± 0.59 0.93% 2.33%
S3D 61.87 ± 0.61 5.22% 75.56 ± 0.37 0.65% 2.94%
SPSSOT (our) 65.10 ± 0.24 - 76.05 ± 0.54 - -

DeepJDOT, we set α = 0.5, λt = 1.0, λs = 2.0 and the
number of iterations is 5000. In SPSSOT , we set α = 0.05
in Eq. (4), θs = 1.0 in Eq.(4) and β = 0.15, λ = 0.5 in
Eq. (10). In Algorithm 2, the hardness function is Squared
Error, the number of base classifiers is set to 5, the number of
bins is to 10, and the number of iterations is set to 5000. In
MME, LIRR and S3D, we apply the same network structure
of G and F , and keep the same batch size and learning rate.
We repeat each experiment for 5 times and record the average
results. The parameter sensitivity analysis is conducted later
in Sec.V-E.3.

Because over 80% papers about Sepsis prediction reported
AUC [11], we also pick it as our performance metric.

Our experiment platform is a server with AMD Ryzen 9
3900X 12-Core Processor, 64 GB RAM and GeForce RTX
3090. We use Python 3.8 with scikit-learn 0.24, POT 0.7 and
tensorflow 2.4 on Ubuntu 20.04 for algorithm implementation.
Our codes and models can be found on Github4.

D. Results and Discussion
The experiment results of SPSSOT and the baselines are

reported in Table III. To make a more comprehensive com-
parison, we demonstrate the experimental results from three
perspectives.

First, SPSSOT outperforms the other five transfer learn-
ing baselines. Between them, DeepJDOT is an unsupervised
transfer learning method based on Optimal Transport [40].
Thus, the improvement is expected because our SPSSOT can
further leverage the target labeled data (although the labeled
data may be little). Compared to Finetune, a common method
in transfer learning, the advantage of our method further
verifies the effectiveness of using optimal transport to align
two feature spaces during the training process. It is worth
noting that, while Finetune considers 1% labeled data in the
target domain, its performance is even worse than DeepJDOT

4https://github.com/RuiqingDing/SPSSOT

without considering any labeled target data. This indicates that
even if we have certain labeled data in the target domain, it
is still non-trivial to properly leverage the knowledge of such
labeled data. In addition, MME, LIRR and S3D are the state-
of-the-art semi-supervised transfer learning methods. They all
outperform the other baselines, which shows that it makes
sense to use the labeled data of the source and target domains
for domain adaptation at the same time. Specifically, these
methods are comparable to SPSSOT in Challenge → MIMIC,
while SPSSOT is over 3% ahead in MIMIC → Challenge.
To some degree, this demonstrates that our method can more
efficiently use the sparsely labeled target data throughout the
knowledge transfer process.

Second, compared to the baseline methods (LR, NN and
XGBoost) that are trained with source data and target labeled
data together, SPSSOT improves at least 7.05% in MIMIC →
Challenge and 4.34% in Challenge → MIMIC. The probable
reason is that the feature distributions of two domains are
different so that simply putting two domains’ data together for
training is not effective. When we further compare the models
that train together and Finetune, Finetune may not perform
better. This result illustrates that though the model trained
with source data provides initial parameters for FineTune, the
initialization probably is not suitable for target data. Therefore,
it may appear a negative transfer when the feature distributions
of two domains are not similar.

Third, all the no-transfer baselines, i.e., Source Only and
Target Only, perform rather poorly. The results of Source
Only indicate that, though MIMIC and Challenge both are
medical datasets with the same features, there still are some
differences. For Target Only methods, as we only have a small
amount of labeled data (1% in our setting) to train the model,
the performance cannot be guaranteed, which is like the cold
start scenario. Moreover, we can find that the AUC values of
NN are very small while only using target labeled data, which
may be due to the overfitting on a small number of samples.
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(a) MIMIC → Challenge (b) Challenge → MIMIC

Fig. 4. Ablation Study: compare SPSSOT with its variants.

(a) MIMIC → Challenge (b) Challenge → MIMIC

Fig. 5. The convergence performance of SPSSOT and DeepJDOT.

(a) MIMIC → Challenge (b) Challenge → MIMIC

Fig. 6. Different percentages of labeled data in target domain.

(a) MIMIC → Challenge (b) Challenge → MIMIC

Fig. 7. Different sampling percentages of source data.

(a) weight of optimal transport (b) weight of source’s classification
loss

(c) weight of discriminative cen-
troid loss

(d) weight of group entropy

Fig. 8. Parameter Sensitivity of MIMIC → Challenge: vary the four hyperparameters in the loss function and compare the results of the experiments.

E. Analysis

1) Ablation Study: To analyse the separate contribution of
SPSSOT , we compare SPSSOT with three variants of SPSSOT
in this section, as listed below:

• SSOT: we remove Self-paced ensemble from SPSSOT .
• SPSSOT NC: we do not consider intra-domain structure

during transferring, i.e., β = 0 in Eq. (10).
• SPSSOT NG: we delete the group entropic loss during

training, i.e., λ = 0 in Eq. (10).

The results are shown in Fig. 4. As we can see, compared
with the complete model, SSOT is worse. This is because
after removing the Self-paced ensemble, the datasets encounter
a label imbalance that will result in the difficulty of mod-
eling. SSPSOT NC ignores the intra-domain structure with
no consideration of the embedding distances in the hidden
feature space; it is thus hard to find a good classification
boundary. What’s more, SPSSOT NG causes that the paired
target unlabeled samples may come from different classes; this
would lead to an ambiguous result. In brief, the results indicate
that each part of our model SPSSOT is necessary.

2) Convergence: To illustrate the convergence of SPSSOT ,
we evaluate the test AUCs of the transfer learning methods,
SPSSOT and DeepJDOT. The results are shown in Fig. 5.
It reveals that our model can achieve significantly better

test AUCs only with a few iterations and keep relatively
stable convergence performance. On the task of Challenge →
MIMIC, there are obvious changes in some iterations, like the
1000th and the 2000th iterations. That is because after every
1000 iterations, SPSSOT will resample from the majority data
and continue training. With the increasing resampling times,
the test performance will gradually become stable.

3) Sensitivity Analysis: Labeled Percentage in Target Do-
main. In experiments, we set 1% of the target domain data
to have labels by default. To further verify the stability of
the method, we adjust the proportion of samples with known
labels in the target domain to 0.5%, 2% and 4%. In Fig. 6,
we show the results of different target label percentages. It
can be observed that SPSSOT always performs the best in
these percentages. It is reasonable that as the labeled percent-
age decreases, so does the models’ performances. However,
compared with the models that are trained with source data
and target labeled data, SPSSOT keeps a relatively steady
trend. This is an ideal situation for practical applications,
which means that we can train a transfer learning model with
acceptable performance by spending a small amount of cost
to label a small amount of data.

Sampling Percentage of Source Data. To validate the
effect of different numbers of source domain samples, we con-
duct experiments on source data with different sample sizes.
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(a) Finetune (M→C) (b) DeepJDOT(M→C) (c) SPSSOT (M→C) (d) Finetune (C→M) (e) DeepJDOT(C→M) (f) SPSSOT (C→M)

Fig. 9. Feature visualization. M → C means MIMIC → Challenge and C → M means Challenge → MIMIC. Different colors represent different
classes (red: will have Sepsis, blue: will not have Sepsis), different shapes represent different domains (round: source domain, cross: target). Best
viewed in color.

TABLE IV
RESULTS OF DIFFERENT SEPSIS EARLY DETECTION TARGETS.

Advance Time MIMIC → Challenge Challenge → MIMIC
2 hours 63.53 ± 0.51 71.64 ± 0.71
4 hours 64.08 ± 0.35 72.30 ± 0.65
6 hours(default) 65.10 ± 0.24 76.05 ± 0.54

Fig. 7 displays the results. We observe that the performance
of all methods increases when using more source samples. At
the same time, our SPSSOT approach consistently outperforms
the other two baselines, which demonstrates the effectiveness
of our proposed method for knowledge transfer.

Hyper-parameter Sensitivity. There exist four important
hyper-parameters in the loss function of SPSSOT: the weight
of optimal transport α in Eq. (4), the weight of the source
data’s classification loss θs in Eq. (4), the weight of discrim-
inative centroid loss β, and the weight of group entropy λ in
Eq. (10). To test the stability of the performances of SPSSOT ,
we take a transfer scenerio, MIMIC → Challenge, as example
to test different values of α, θs, β and λ. The results are
shown in Fig. 8. Comparatively speaking, the model is not
sensitive to all these parameters and the AUC just ranges from
around 64 to 65. According to the performance, we select
the values of these parameters used in our experiments, i.e.,
α = 0.05, θs = 1, β = 0.15 and λ = 0.5.

4) Different Sepsis Early Detection Targets: Early Sepsis
detection is potentially life-saving because doctors can treat
earlier [32]. In the default setting, we predict Sepsis 6 hours
before clinical diagnosis. Here, we add two early detection
targets, 2 hours ahead and 4 hours ahead. The results are listed
in Table IV. We can find that the performance is best when
the advance time is 6 hours. This is because when the advance
time is short, the data imbalance will be exacerbated (i.e., the
proportion of having Sepsis is decreased).

5) Diverse Feature Generators: Considering the physiologi-
cal indicators can be regarded as time-series data, we adapt the
popular time series networks, LSTM [58] and GRU [59], as the
feature generators of SPSSOT . As seen in Table V, LSTM and
GRU perform worse than NN (the default feature generator).
Meanwhile, by fixing the feature generator (e.g., LSTM or
GRU), SPSSOT consistently performs the best. This verifies
the robustness of our method in applying different feature
generators. We also concatenate the feature representations of
NN and GRU (i.e., NN+GRU), but the results are still not
as good as those of using only NN. These results inspire us

TABLE V
RESULTS OF DIFFERENT FEATURE GENERATORS IN SPSSOT .

MIMIC → Challenge Challenge → MIMIC
Source Only
NN 59.24 ± 0.75 70.53 ± 1.34
LSTM 54.58 ± 0.50 68.26 ± 1.01
GRU 54.87 ± 0.97 69.72 ± 0.96
NN+GRU 57.37 ± 0.74 70.53 ± 0.93
Target Only
NN 60.58 ± 0.14 61.92 ± 0.29
LSTM 54.74 ± 0.93 58.75 ± 1.29
GRU 57.62 ± 0.59 57.29 ± 0.76
NN+GRU 59.35 ± 0.86 59.99 ± 0.54
Source & Target Train Together
NN 60.81 ± 0.24 71.53 ± 0.09
LSTM 54.67 ± 1.05 68.83 ± 0.97
GRU 58.14 ± 1.10 70.56 ± 0.94
NN+GRU 59.35 ± 0.36 71.52 ± 0.48
Source & Target Transfer
Finetune (NN) 60.11 ± 0.73 71.62 ± 1.72
Finetune (LSTM) 58.25 ± 0.77 70.03 ± 0.90
Finetune (GRU) 59.60 ± 0.76 70.22 ± 1.00
Finetune (NN+GRU) 60.05 ± 0.49 71.29 ± 1.26
SPSSOT (NN) 65.10 ± 0.24 76.05 ± 0.54
SPSSOT (LSTM) 60.45 ± 0.82 73.67 ± 0.62
SPSSOT (GRU) 62.09 ± 0.90 73.94 ± 0.50
SPSSOT (NN+GRU) 63.81 ± 0.51 75.18 ± 0.78

that for exploiting time series models, perhaps more advanced
feature engineering techniques are required.

6) Feature visualization: To show the feature transfer capa-
bility, we visualize the t-SNE embeddings [60] of the hidden
representation by Finetune, DeepJDOT and SPSSOT . Fig. 9
(a) - 9 (c) correspond to MIMIC → Challenge and Fig. 9
(d) - 9 (f) correspond to Challenge → MIMIC. In each sub-
figure, different colors denote different categories (red: will
have Sepsis, blue: will not have Sepsis), and different shapes
denote different domains (round: source domain, cross: target).
Fig. 9(a) and Fig. 9(d) display that the features learned by
Finetune for different domains are almost totally separated,
i.e., points represented by different shapes in the same feature
space are separated from each other. Fig. 9(b) and Fig. 9(e)
illustrate that though the domains can be aligned to a certain
extend, the bad thing is some target samples are aligned to the
source data with wrong classes, causing negative transfer. Note
that, Fig. 9(c) and Fig. 9(f) show that the features generated by
SPSSOT achieve better domain alignment with a clearer class
boundary. Specifically, when comparing Fig. 9(e) and Fig. 9(f),
they both can blend the data from two domains well (i.e., the
circled points and the crossed points are mixed). However, the
classification boundary of DeepJDOT is not as clear as that



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 11

of SPSSOT . In particular, DeepJDOT’s blue and red samples
near the boundary are more interleaved than SPSSOT , which
increases the likelihood that they will be incorrectly classified.
In a nutshell, the visualization results reveal that our proposal
can match the complex structures of the source and target
domains as well as maximize the margin between different
classes.

VI. CONCLUSION

In this paper, we describe a new framework based on
optimal transport and self-paced ensemble to solve the semi-
supervised transfer learning problem for Sepsis early detection
in the scenario that there is only little labeled data in the target
domain (e.g. hospital). Empirical studies on real-world clinical
datasets demonstrate the effectiveness of SPSSOT in aligning
feature spaces and eliminating the influence of class imbal-
ance. In fact, though SPSSOT is proposed for Sepsis early
detection, it can be easily adapted for other transfer learning
tasks. The only requirement is choosing a suitable structure to
extract deep features, e.g., CNNs for image identification [41]
and RNNs for time series prediction [58].

It is no doubt that there are still many problems to be
solved. First, we only downsample from the labeled data
to mitigate the effects of data imbalance. It is worthwhile to
think about how to downsample from the target unlabeled data
effectively to improve the accuracy of detection. Moreover,
we can further explore how to exploit time series models
better. After that, when there are private features in the source
domain, it is hard to directly apply the optimal transport
technique. Because feature similarity cannot be appropriately
calculated between a source sample and a target sample.
Therefore, it may require incorporating more transfer learning
techniques, e.g., knowledge distillation [61]. Finally, privacy
protection is an important issue that cannot be ignored when
models are implemented in real-world applications. However,
the constraints of privacy protection clauses often prevent data
from being moved to the data center for unified storage and
training. Federated learning [62] provides a new idea and still
needs to be explored.
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de l’Académie Royale des Sciences de Paris, 1781.

[28] A. Karpatne, I. Ebert-Uphoff, S. Ravela, H. A. Babaie, and V. Kumar,
“Machine learning for the geosciences: Challenges and opportunities,”
IEEE Transactions on Knowledge and Data Engineering, vol. 31, no. 8,
pp. 1544–1554, 2018.



12 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

[29] R. Joshi, D. Kommers, L. Oosterwijk, L. Feijs, C. van Pul, and
P. Andriessen, “Predicting neonatal sepsis using features of heart rate
variability, respiratory characteristics, and ecg-derived estimates of infant
motion,” IEEE Journal of Biomedical and Health Informatics, vol. 24,
no. 3, pp. 681–692, 2020.

[30] C. León, G. Carrault, P. Pladys, and A. Beuchée, “Early detection of late
onset sepsis in premature infants using visibility graph analysis of heart
rate variability,” IEEE Journal of Biomedical and Health Informatics,
vol. 25, no. 4, pp. 1006–1017, 2021.

[31] F. van Wyk, A. Khojandi, and R. Kamaleswaran, “Improving prediction
performance using hierarchical analysis of real-time data: A sepsis case
study,” IEEE Journal of Biomedical and Health Informatics, vol. 23,
no. 3, pp. 978–986, 2019.

[32] M. A. Reyna, C. Josef, S. Seyedi, R. Jeter, S. P. Shashikumar, M. B.
Westover, A. Sharma, S. Nemati, and G. D. Clifford, “Early prediction
of sepsis from clinical data: the physionet/computing in cardiology
challenge 2019,” in 2019 Computing in Cardiology (CinC). IEEE,
2019, pp. Page–1.

[33] N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, “Optimal
transport for domain adaptation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 39, no. 9, pp. 1853–1865, 2016.

[34] N. Courty, R. Flamary, and D. Tuia, “Domain adaptation with regu-
larized optimal transport,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2014, pp.
274–289.

[35] M. Perrot, N. Courty, R. Flamary, and A. Habrard, “Mapping estimation
for discrete optimal transport,” in Proceedings of the 30th International
Conference on Neural Information Processing Systems, 2016, pp. 4204–
4212.

[36] I. Redko, A. Habrard, and M. Sebban, “Theoretical analysis of domain
adaptation with optimal transport,” in Joint European Conference on
Machine Learning and Knowledge Discovery in Databases. Springer,
2017, pp. 737–753.

[37] N. Courty, R. Flamary, A. Habrard, and A. Rakotomamonjy, “Joint
distribution optimal transportation for domain adaptation,” in NIPS,
2017.

[38] Y. Yan, W. Li, H. Wu, H. Min, M. Tan, and Q. Wu, “Semi-supervised
optimal transport for heterogeneous domain adaptation.” in IJCAI, vol. 7,
2018, pp. 2969–2975.

[39] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon,
S. Chambon, L. Chapel, A. Corenflos, K. Fatras, N. Fournier, L. Gau-
theron, N. T. Gayraud, H. Janati, A. Rakotomamonjy, I. Redko, A. Rolet,
A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and
T. Vayer, “Pot: Python optimal transport,” Journal of Machine Learning
Research, vol. 22, no. 78, pp. 1–8, 2021.

[40] B. B. Damodaran, B. Kellenberger, R. Flamary, D. Tuia, and N. Courty,
“Deepjdot: Deep joint distribution optimal transport for unsupervised
domain adaptation,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 447–463.

[41] R. Xu, P. Liu, L. Wang, C. Chen, and J. Wang, “Reliable weighted
optimal transport for unsupervised domain adaptation,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 4394–4403.

[42] C. Elkan, “The foundations of cost-sensitive learning,” in International
joint conference on artificial intelligence, vol. 17, no. 1. Lawrence
Erlbaum Associates Ltd, 2001, pp. 973–978.

[43] N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer, “Smoteboost:
Improving prediction of the minority class in boosting,” in European
conference on principles of data mining and knowledge discovery.
Springer, 2003, pp. 107–119.

[44] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote:
synthetic minority over-sampling technique,” Journal of artificial intel-
ligence research, vol. 16, pp. 321–357, 2002.

[45] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” in icml, vol. 96. Citeseer, 1996, pp. 148–156.

[46] M. P. Kumar, B. Packer, and D. Koller, “Self-paced learning for latent
variable models,” in Advances in Neural Information Processing Systems
23: 24th Annual Conference on Neural Information Processing Systems,
J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta, Eds., 2010, pp. 1189–1197.

[47] D. Zhang, J. Han, L. Zhao, and D. Meng, “Leveraging prior-knowledge
for weakly supervised object detection under a collaborative self-paced
curriculum learning framework,” Int. J. Comput. Vis., vol. 127, no. 4,
pp. 363–380, 2019.

[48] D. Zhang, D. Meng, and J. Han, “Co-saliency detection via a self-paced
multiple-instance learning framework,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 39, no. 5, pp. 865–878, 2017.

[49] D. Zhang, J. Han, L. Yang, and D. Xu, “SPFTN: A joint learning
framework for localizing and segmenting objects in weakly labeled
videos,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp.
475–489, 2020.

[50] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals,” circulation, vol.
101, no. 23, pp. e215–e220, 2000.

[51] C. W. Seymour, V. X. Liu, T. J. Iwashyna, F. M. Brunkhorst, T. D. Rea,
A. Scherag, G. Rubenfeld, J. M. Kahn, M. Shankar-Hari, M. Singer,
C. S. Deutschman, G. J. Escobar, and D. C. Angus, “Assessment
of Clinical Criteria for Sepsis: For the Third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3),” JAMA, vol. 315,
no. 8, pp. 762–774, 02 2016.

[52] M. Yang, C. Liu, X. Wang, Y. Li, H. Gao, X. Liu, and J. Li, “An
explainable artificial intelligence predictor for early detection of sepsis,”
Critical Care Medicine, vol. 48, no. 11, pp. e1091–e1096, 2020.

[53] S. Angenent, S. Haker, and A. Tannenbaum, “Minimizing flows for the
monge–kantorovich problem,” SIAM journal on mathematical analysis,
vol. 35, no. 1, pp. 61–97, 2003.

[54] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition,” in European conference
on computer vision. Springer, 2016, pp. 499–515.

[55] D. Gamberger, N. Lavrac, and C. Groselj, “Experiments with noise
filtering in a medical domain,” in ICML, vol. 99, 1999, pp. 143–151.

[56] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii,
a freely accessible critical care database,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[57] M. Zabihi, S. Kiranyaz, and M. Gabbouj, “Sepsis prediction in intensive
care unit using ensemble of xgboost models,” in 2019 Computing in
Cardiology (CinC). IEEE, 2019, pp. Page–1.

[58] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[59] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical eval-
uation of gated recurrent neural networks on sequence modeling,”
arXiv:1412.3555, 2014.

[60] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[61] L. Ma, X. Ma, J. Gao, X. Jiao, Z. Yu, C. Zhang, W. Ruan, Y. Wang,
W. Tang, and J. Wang, “Distilling knowledge from publicly available
online emr data to emerging epidemic for prognosis,” in Proceedings of
the Web Conference 2021, 2021, pp. 3558–3568.

[62] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[63] V. L. Parsons, “Stratified sampling,” Wiley StatsRef: Statistics Reference
Online, pp. 1–11, 2014.

[64] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in Proceedings
of the 8th IEEE International Conference on Data Mining, pages =
413–422, publisher = IEEE Computer Society, year = 2008,.



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 13

APPENDIX

A. Training Time Consumption
Table VI reports the training time consumption and AUC

values of SPSSOT with different batch sizes. Though the
optimal transport algorithm and the group entropic loss cal-
culation have high complexity (super-quadratically with the
size of the sample), the training usually takes only a few
minutes because of the multiple rounds of minibatch iterative
optimization [40] [41]. Therefore, we can find that as the batch
size increases, the training time increases, but the AUC value
does not change significantly. In other words, a larger batch
size does not necessarily lead to a higher yield. Therefore,
we choose 128 as the batch size of SPSSOT . At the same
time, Table VII compares the training time of different semi-
supervised transfer learning methods. The time consumption
of our method is comparable to that of baselines. Considering
that our method can achieve the best performance, such time
consumption is generally acceptable in practice.

TABLE VI
TRAINING TIME CONSUMPTION WITH DIFFERENT BATCH SIZES.

Batch MIMIC → Challenge Challenge → MIMIC

Size AUC Time(s) AUC Time(s)
64 63.73 ± 0.16 163.52 74.78 ± 0.35 148.74
128 65.10 ± 0.24 181.38 76.05 ± 0.54 167.31
256 64.45 ± 0.45 235.80 75.87 ± 0.32 220.82
512 64.46 ± 0.69 406.63 75.14 ± 0.73 392.36

TABLE VII
TRAINING TIME CONSUMPTION WITH DIFFERENT METHODS.

Method MIMIC → Challenge Challenge → MIMIC

AUC Time(s) AUC Time(s)
MME 61.49 ± 0.84 75.28 75.07 ± 0.70 68.90
LIRR 62.76 ± 0.95 140.45 75.35 ± 0.59 138.64
S3D 61.87 ± 0.61 165.82 75.56 ± 0.37 152.79
SPSSOT 65.10 ± 0.24 181.38 76.05 ± 0.54 167.31

B. Synchronous Self-paced Downsampling
In general, we want to downsample the samples without

Sepsis to make the dataset more balanced. However, down-
sampling unlabeled data is non-trivial as we do not know
their labels. In SPSSOT , we only consider obtaining balanced
training data from the source and target labeled data. Here
we further explore whether downsampling the unlabeled data
is effective. We design a strategy to downsample the labeled
and unlabeled data synchronously based on the widely-used
stratified sampling technique [63]. The basic idea is to use
the currently-trained model to predict unlabeled data, and
then downsampling the unlabeled data according to prediction
probabilities. In particular, we modify SPSSOT to achieve
synchronous downsampling of labeled and unlabeled data in
the self-paced ensemble process, named S2PSSOT: (i) iterate
1000 times with all the data to obtain the initialized base
classifier SSOT; (ii) obtain the prediction probability of 79%
unlabeled data by the base classifier, split them into 10 bins

Algorithm 3 Semi-supervised Optimal Transport with Syn-
chronous Self-paced Ensemble (S2PSSOT)
Require: Source data as Ds = {(xs

i , y
s
i )}

ns
i=1; Target labeled data as Dl =

{(xl
j , y

l
j)}

nl
j=1; Target unlabeled data as Du = {(xu

k)}
nu
k=1;Hardness

function H; Base classifier SSOT; Number of base classifiers n; Number
of hardness bins k; Number of probability bins m; Total number of
training iterations of SSOT T;

1: Initialize SSOT0 according to Algorithm 1;
2: for i = 1 to n do
3: Ensemble Fi(Ds,Dl,Du) = 1

i

∑i−1
j=0 SSOTj(Ds,Dl,Du);

4: for D ∈ {Ds,Dl} do
5: Initialize P ⇐ minority in D;
6: Cut majority set into k bins w.r.t. H(D, Fi): B1, B2, · · · , Bk;
7: Average hardness contribution in l-th bin: hl =∑

m∈Bl
H(xm, ym, Fi)/|Bl|, ∀l = 1, · · · , k;

8: Update self-paced factor ω = tan( iπ
2n

);
9: Unnormalized sampling weight of l-th bin: pl = 1

hl+ω , ∀l =

1, · · · , k;
10: Downsample from l-th bin with pl∑

m pm
· |P|;

11: end for
12: Obtain the downsampled labeled subset {Ds

d,D
l
d};

13: Calculate the probabilities: P l
d = Fi(Dl

d) and Pu = Fi(Du);
14: Cut Dl

d into m bins according to P l
d : Gl

1, G
l
2, · · · , Gl

m;
15: Cut Du into m bins according to Pu : Gu

1 , G
u
2 , · · · , Gu

m;
16: Calculate the percentage of each bin in Dl

d: gj = |Gl
j |/|Dl

d|;
17: Downsample from j-th bin, Gu

j , with gj · |Du|;
18: Train SSOTi using {Ds

d,D
t
d,D

u
d } according to Algorithm 1;

19: end for
20: return Final ensemble model F (Ds,Dl,Du) = 1

n

∑n
m=1

SSOTm(Ds,Dl,Du);

according to prediction probabilities, and keep the proportion
of downsampled unlabeled data in each bin is consistent with
downsampled labeled data; (iii) iteratively train 1000 times
with the downsampled data and go back to step (ii). We repeat
steps (ii) & (iii) five times for getting the final model. The
detailed algorithm flow is shown in Algorithm 3 (line 13 to
17 is to downsample the target unlabeled data).

As shown in Table VIII, there is no significant im-
provement of the new S2PSSOT compared to the original
SPSSOT . The possible reason is that the prediction probabil-
ities of the unlabeled data still have uncertainties and thus
the prediction-probability-based unlabeled data downsampling
may not achieve the ideal data balancing effect. We believe
this is an open and interesting question worthy of further
exploration.

TABLE VIII
RESULTS OF SYNCHRONOUS DOWNSAMPLING FROM TARGET

UNLABELED DATA.

Method MIMIC → Challenge Challenge → MIMIC
SPSSOT 65.10 ± 0.24 76.05 ± 0.54
S2PSSOT 64.89 ± 0.28 75.34 ± 0.39

C. Analysis of Outlier Disturbance

The self-paced sampling in SPSSOT has filtered out some
noise samples through self-paced hardness harmonization. In
general, the outliers would not affect the calculation of class
centers. To confirm this, we also use a popular outlier detection
algorithm, the isolation forest algorithm [64], to filter out the
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outliers before calculating the class centers. As shown in Table
IX, adding an explicit step of outlier removal has no noticeable
effect on the results. Thus, as expected, the outliers do not
seriously affect the accuracy of the calculation of class centers
in SPSSOT .

TABLE IX
RESULTS OF REMOVING OUTLIERS.

Method MIMIC → Challenge Challenge → MIMIC
SPSSOT 65.10 ± 0.24 76.05 ± 0.54
+ outlier removal 65.00 ± 0.20 75.89 ± 0.35

D. Selection of ρ in Label Adaptive Constraint
In Eq. (3), we adapt a parameter, ρ, to adjust the transport

cost between two samples with the same label; especially when
ρ = 0, the transport cost is 0; when ρ = 1, the transport cost is
calculated only according to the similarity of features (same as
the unsupervised setting). We set ρ = {0, 0.05, 0.1, 0.2, 0.4}
and conduct experiments. The results are shown in Table X. It
can be observed that when ρ is small (between 0 to 0.1), the
performance is better and relatively stable; then as ρ increases,
the AUC shows a slow downward trend. This indicates that
in our task, it is better to set a small value to ρ, and setting
ρ = 0 (i.e., ignoring the transport cost if two samples have
the same label) is also reasonable. In SPSSOT , we set ρ to 0.1
and 0.05 for MIMIC → Challenge and Challenge → MIMIC,
respectively.

TABLE X
RESULTS OF DIFFERENT ρ.

ρ MIMIC → Challenge Challenge → MIMIC
0 64.98 ± 0.26 75.96 ± 0.68

0.05 64.99 ± 0.35 76.05 ± 0.54
0.1 65.10 ± 0.24 75.90 ± 0.52
0.2 64.47 ± 0.39 74.75 ± 1.15
0.4 63.91 ± 0.21 74.19 ± 0.75

E. Unmatched Features
In SPSSOT , we use only the features shared by two domains

(listed in Table I) with a domain-shared feature generator G.
Here, we list the (unmatched) private features of two datsets
in Table XI. Considering that our task is a transfer learning
setting, we discuss the private features for the target domain
and source domain separately.

1) Target private features: Considering target private fea-
tures may be helpful to the target classification task, we
design new network structures to incorporate these features (as
shown in Fig. 10): (i) add a feature encoder Gpri for private
features (the structure is the same as G); (ii) concatenate the
output of Gpri and the output of F’s first layer; (iii) take the
concatenation as the input of a new target classifier Fnew.
After training SPSSOT , we transfer the parameters of SPSSOT
and randomly initialize parameters in other components, and
then update parameters with the target labeled data. In brief,
we finetune SPSSOT by the target labeled data with full
features (i.e., shared and private features).

Fig. 10. The network structure to transfer SPSSOT ’s parameters to
target domain with private features. Xshare means only using shared
features as the input, similarly, Xprivate means only using target
private features as input.

As illustrated in Table XII, we can find that there is
a significant improvement in Challenge → MIMIC but no
significant change in MIMIC→Challenge. This may be be-
cause Challenge only has two private features which are not
important.

TABLE XI
THE PRIVATE FEATURES OF TWO DATASETS.

MIMIC Challenge
Height, Weight, GCS,
CRP, PCT, D-Dimer,
FBG, TCO2

TBil(Total bilirubin),
Troponin I

TABLE XII
RESULTS OF ADDING TARGET PRIVATE FEATURES.

Method MIMIC → Challenge Challenge → MIMIC
SPSSOT 65.10 ± 0.24 76.05 ± 0.54

+ feaTprivate 64.88 ± 0.51 77.53 ± 0.59

2) Source private features: Transferring the knowledge from
source private features for the prediction in the target domain is
non-trivial. The optimal transport technique is hard to directly
apply to source private features, as no corresponding features
exist in the target domain (so feature similarity cannot be
appropriately calculated between a source sample and a target
sample). To address this issue, it may require incorporating
more transfer learning techniques, e.g., knowledge distillation
[61].


